

2 - Divisibility, Euclidean algorithm

An **integer** is a number of the form $\dots, -3, -2, -1, 0, 1, 2, 3, 4, \dots$

Division algorithm. If a and b are integers, then there exist integers q and r such that $b = qa + r$, $0 \leq r < a$.

Definitions.

If $r = 0$ in the division algorithm, we say that a **divides** b and write $a | b$. A natural number n is **prime** if $n = ab$ implies $a = 1$ or $b = 1$.

Examples 1. $3 | 9$ since $9 = 3 \times 3$, $2 \nmid 9$, 9 is not prime, 5 is prime.

Naive algorithm. Check $2 | n$, $3 | n$, \dots , $n-1 | n$.

If $a \nmid n$ for all $1 < a < n$, then n is prime.

We can do better: for a composite number $n = ab$, one factor, say a , is smaller:

$$n = ab \geq aa = a^2 \xrightarrow{\sqrt{}} \sqrt{n} \geq a$$

Faster algorithm. If $a \nmid n$ for all $1 < a \leq \sqrt{n}$, then n is prime.

Example 2. Is 89 prime? Check for primes $\leq \sqrt{89} < \sqrt{100} = 10$: $2, 3, 5, 7$.

Contrapositive of the above statement is also true:

If n is not prime, then $a | n$ for some a such that $1 < a \leq \sqrt{n}$

Fundamental theorem of arithmetic. Every natural number is a unique product of increasing primes $p_1 < p_2 < p_3 < \dots < p_r$ with some natural number multiplicities $n_1, n_2, n_3, \dots, n_r$:

$$n = p_1^{n_1} p_2^{n_2} p_3^{n_3} \dots p_r^{n_r}.$$

This theorem is proved with a helper theorem called a **lemma**; we omit both proofs.

Euclid's lemma. If p is a prime number and $p | ab$, then $p | a$ or $p | b$.

Definition. The **greatest common divisor** of two natural numbers a and b , written as $\gcd(a, b)$, is the greatest integer d such that $d | a$ and $d | b$.

Examples 3. $\gcd(17, 19) = 1$ since 17 and 19 share no common prime factors.

$$\gcd(18, 120) = \gcd(2^1 \cdot 3^2, 2^3 \cdot 3^1 \cdot 5^1) = 2^1 \cdot 3^1 = 6$$

Exercise. 1) $\gcd(210, 45) = ?$

2) $\gcd(F_{0,16}, CC_{16}) = ?$

Euclidean algorithm

Societal contexts: The hardness of factoring large integers is the basis for **RSA cryptography** and is an [open problem in computer science](#). On quantum computers, factorization is solvable in polynomial time via **Schor's algorithm**. Due to the hardness of factoring, classical computers find gcd without factoring:

Lemma. If a divides b and c , then a divides $b-c$ and $b+c$ too.

Why?

$$a|b \text{ and } a|c \Rightarrow b=ab' \text{ and } c=ac' \Rightarrow b \pm c = ab' \pm ac' = a(b' \pm c') \Rightarrow a | (b \pm c)$$

for some integers b' , c'

Euclidean algorithm. If $b \div a$ gives remainder r , then $\gcd(b, a) = \gcd(a, r)$.

Why? Say $b = qa+r$. Since $\gcd(a, b)$ divides both b and qa , we know $\gcd(a, b) | b - qa = r$ by Lemma. Since $\gcd(a, b)$ divides a and r , we know $\gcd(a, b) \leq \gcd(a, r)$ by the definition of $\gcd(a, r)$.

Likewise, since $\gcd(a, r)$ divides both qa and r , we know $\gcd(a, r) | qa + r = b$ by Lemma. Since $\gcd(a, r)$ divides a and b , we know $\gcd(a, r) \leq \gcd(a, b)$ by the definition of $\gcd(a, b)$.

Example 4. Find $\gcd(196, 42)$ by the Euclidean algorithm.

$$\begin{array}{rcl} 196 = 4 \times 42 + 28 & \xrightarrow{\hspace{1cm}} & \gcd(196, 42) = \gcd(42, 28) \\ 42 = 1 \times 28 + 14 & \xrightarrow{\hspace{1cm}} & = \gcd(28, 14) \\ 28 = 2 \times 14 + 0 & \xrightarrow{\hspace{1cm}} & = \gcd(14, 0) = 14 \end{array}$$

The reversed Euclidean algorithm helps write $\gcd(a, b)$ as an integer combination of a and b :

Example 5. Find integers m and n such that $\gcd(196, 42) = 196m + 42n$.

Exercise.

3A) Use the Euclidean algorithm to find $\gcd(170051, 170)$.

3B) Find integers m and n such that $\gcd(170051, 170) = 170051m + 170n$.